A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell

نویسندگان

  • Lori Clay
  • Fabrice Caudron
  • Annina Denoth-Lippuner
  • Barbara Boettcher
  • Stéphanie Buvelot Frei
  • Erik Lee Snapp
  • Yves Barral
چکیده

In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging.DOI: http://dx.doi.org/10.7554/eLife.01883.001.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell

In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane...

متن کامل

Polarization of the Endoplasmic Reticulum by ER-Septin Tethering

Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in ne...

متن کامل

Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast.

Sphingolipids are crucial components of membranes, and sphingolipid metabolites serve as signaling molecules. Yeast Orm1 and Orm2 belong to a conserved family of ER membrane proteins that regulate serine palmitoyltransferase, which catalyzes the first and rate-limiting step in sphingolipid synthesis. We now show that sphingolipid synthesis through Orm1 is a target of TOR signaling, which regula...

متن کامل

ER domains

n page 897, Luedeke et al. show that, like the plasma membrane, the ER can be compartmentalized into distinct membrane domains. In budding yeast, this separation restricts the diffusion of ER membrane proteins between the bud and the mother cell. The mRNAs of many bud-specific membrane proteins are actively transported into the bud. To keep these mRNAs and proteins in the bud, they must be kept...

متن کامل

Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells

Ceramides are the major sphingolipid metabolites involved in cell survival and apoptosis. When HepG2 hepatoma cells were treated with celecoxib, the expression of the genes in de novo sphingolipid biosynthesis and sphingomyelinase pathway was upregulated and cellular ceramide was elevated. In addition, celecoxib induced endoplasmic reticulum (ER) stress in a time-dependent manner. SPTLC2, a sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014